

New oxazoline-containing phosphoramidite ligand for palladium-catalyzed asymmetric allylic sulfonylation

K. N. Gavrilov,^a O. G. Bondarev,^b V. N. Tsarev,^b A. A. Shiryaev,^a
S. E. Lyubimov,^a A. S. Kucherenko,^a and V. A. Davankov^b

^aS. A. Esenin Ryazan State Pedagogic University,
46 ul. Svobody, 390000 Ryazan, Russian Federation.
Fax: +7 (091 2) 44 4390. E-mail: chem@ttc.ryazan.ru

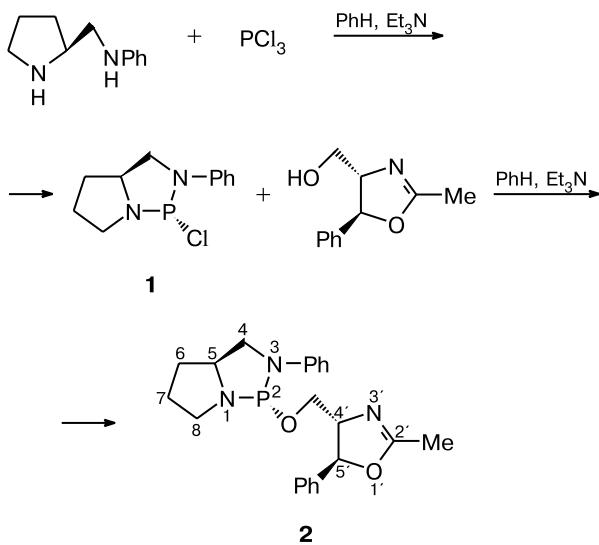
^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,
28 ul. Vavilova, 119991 Moscow, Russian Federation.
Fax: +7 (095) 135 6471. E-mail: bond@ineos.ac.ru

New chiral oxazoline-containing phosphoramidite was synthesized and its complex formation with rhodium(I) and palladium(II) was examined. The new ligand is a highly efficient chiral inductor (*ee* up to 92%) in palladium-catalyzed asymmetric sulfonylation of 1,3-diphenylallyl acetate with sodium *p*-toluenesulfinate.

Key words: *P,N*-ligands, chiral phosphoramidites, palladium, rhodium, asymmetric allylic sulfonylation.

Phosphine derivatives of chiral oxazolines represent the largest and most efficient group of *P,N*-bidentate ligands used in the modern asymmetric catalysis.^{1,2} In recent years, oxazoline-based phosphites have found application as such ligands, which have advantages due to their synthetic accessibility and pronounced π - acidity of the phosphorus center. These compounds were successfully tested in allylic alkylation, hydrosilylation, and conjugated addition of organometallic reagents to enones.^{1–3}

One approach to the design of *P,N*-bidentate derivatives of phosphorous acid involves the introduction of the (2*R*,5*S*)-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane core into these compounds.

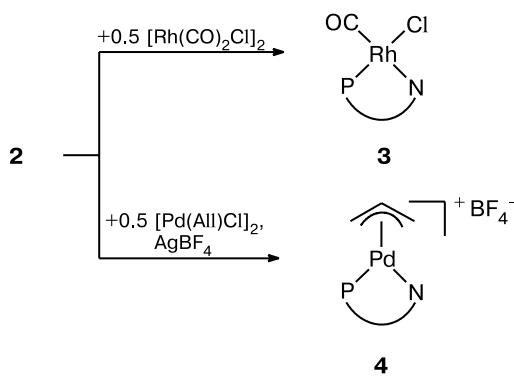

These systems have already made a considerable contribution to palladium-catalyzed amination and alkylation as well as to copper-catalyzed Diels–Alder reactions and the addition of diethylzinc to unsaturated ketones (see the study⁴ and references cited therein).

In the present study, we developed a convenient procedure for the synthesis of chiral phosphoramidite of a new type, which possesses both the above-mentioned phosphabicyclic core and oxazoline periphery. This compound proved to exhibit high asymmetric activity in Pd-catalyzed allylic sulfonylation.

Results and Discussion

The new *P,N*-bidentate ligand was synthesized with the involvement of phosphorylating agent **1**, which was prepared by us for the first time (Scheme 1).

Scheme 1


It should be noted that reagent **1** containing the chiral P atom can be readily prepared in good yield by diastereoselective phosphorylation of (*S*)-2-(anilinomethyl)pyrrolidine. The latter, in turn, is conveniently synthesized from readily accessible *L*-glutamic acid. Reagent **1** is stable on storage under a dry atmosphere, easily purified by vacuum distillation, and can be prepared in multigram amounts. Earlier, ligands with the (2*R*,5*S*)-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane core have been synthesized exclusively with the use of amides of phosphorous acid

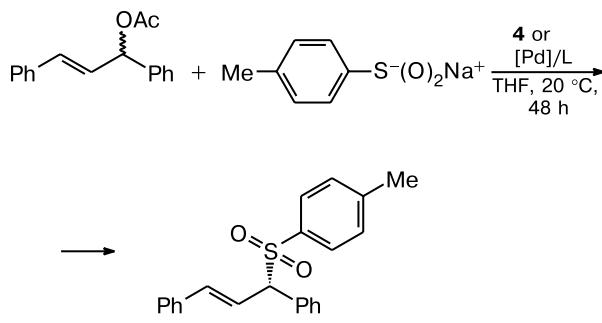
($\text{P}(\text{NMe}_2)_3$ or $\text{P}(\text{NEt}_2)_3$).^{4,5} In this approach, each synthetic step requires refluxing a mixture of the reagents in toluene for two hours, which could be responsible for accumulation of destruction products of phosphoramidites and isomerization of stereochemically nonrigid synthons. By contrast, compound **1** readily and efficiently performs phosphorylation under rather mild conditions (see the Experimental section).

Ligand **2** (*L*) is stable on prolonged storage and is readily soluble in different organic solvents. This ligand contains the stereogenic phosphorus center with the (*R*) configuration, as evidenced by the characteristic^{4,5} spin-spin coupling constant ($^2J_{\text{C}(8),\text{P}} = 38.2$ Hz) in its ^{13}C NMR spectrum (see the Experimental section).

In the next stage of our study, we examined the complex formation with ligand **2** (Scheme 2).

Scheme 2

It should be noted that the reaction of ligand **2** with $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ proceeded nonselectively and afforded chelate compound **3** along with the *trans*- $[\text{Rh}(\text{CO})\text{Cl}(\eta^1-\text{P}^{\text{N}}\text{N})_2]$ complex,* as evidenced⁴ by the presence of a doublet signal ($\delta_{\text{P}} 124.21$, $^1J_{\text{P},\text{Rh}} = 180.6$ Hz) in the ^{31}P NMR spectrum of the reaction solution in CHCl_3 . The parameters of the ^{31}P NMR and IR spectra of compound **3** ($\delta_{\text{P}} 119.68$, $^1J_{\text{P},\text{Rh}} = 242.9$ Hz; $\nu(\text{CO}) = 2008 \text{ cm}^{-1}$ (CHCl_3)) indicate that oxazoline-containing phosphoramidite **2** holds an intermediate position between aminophosphines and aminophosphites in the stereochemical series of phosphorus-containing ligands.^{4,6}


By contrast, cationic palladium(II) chelate complex **4** was obtained in virtually quantitative yield. The ^{31}P NMR spectrum of its solution in CDCl_3 has narrow singlets at $\delta_{\text{P}} 119.33$ and 118.72 with intensities of 63 and 37% belonging to the *exo* and *endo* isomers of **4**, respectively.⁴ The FAB mass spectrum shows characteristic

* Hereinafter, the symbol « \curvearrowright » denotes the residue of ligand **2**, which does not contain P and N atoms.

ion peaks at m/z ($I_{\text{rel}} (\%)$) 542 [$\text{M} - \text{BF}_4^+$] (100), 396 [$\text{L} + \text{H}^+$].

Along with other Pd complexes possessing ligand **2**, complex **4** was used as the catalyst of asymmetric allylic sulfonylation (Scheme 3).

Scheme 3

The results of the catalytic study are summarized in Table 1. It should be noted that the reactions with the use of complex **4** and the $[\text{Pd}(\text{All})\text{Cl}]_2/2\text{L}$ system gave virtually the same results (see Table 1, runs 1 and 2). It is reasonable to suggest that this is associated with the fact that the catalytically active metal complexes $[\text{Pd}(\text{All})(\eta^2-\text{P}^{\text{N}}\text{N})]^+\text{X}^-$ ($\text{X}^- = \text{BF}_4^-$ or Cl^-) have similar structures. At the same time, the use of the Pd^0 complex $[\text{Pd}_2(\text{dba})_3 \cdot \text{CHCl}_3]$ (dba is dibenzylideneacetone) as a precatalyst allowed us to noticeably improve the asymmetric induction (see Table 1, run 3), although the chemical yield was decreased.

Ligand **2** provides a high degree of enantioselectivity. Thus, the reactions with the use of the oxazoline-based phosphine- $[\text{Pd}(\text{PPh}_3)_4]$ system increased *ee* to 93%,⁷ whereas bis(diphenylphosphinite) complexes based on the known stereoselective reagent TADDOL allowed one to obtain *ee* of at most 68%.⁸ It should be emphasized that phosphoramidite **2** has advantages, such as a simple procedure for its preparation from readily available reagents and chemical stability, particularly, with respect to oxidative effects.

Table 1. Results of catalytic allylic sulfonylation of 1,3-diphenylallyl acetate using Pd complexes with ligand **2**

Run	Catalytic system	Yield of 5	
		(%)	<i>ee</i>
1	Complex 4	58	77 (<i>S</i>)
2	$[\text{Pd}(\text{All})\text{Cl}]_2/2\text{L}$	66	82 (<i>S</i>)
3	$[\text{Pd}_2(\text{dba})_3 \cdot \text{CHCl}_3]/2\text{L}$	33	92 (<i>S</i>)

Experimental

The ^{31}P and ^{13}C NMR spectra were recorded on a Bruker AMX-400 instrument (161.98 and 100.61 MHz) with respect to 85% H_3PO_4 in D_2O and CDCl_3 (δ_{C} 76.91), respectively. The assignments of the signals of compounds **1** and **2** in the ^{13}C NMR spectra were made with the use of the DEPT technique and data published in the literature.^{4,5} The mass spectra (EI, 70 eV) were measured on a Varian MAT-311 instrument. The plasma-desorption (PD) ionization mass spectra were obtained on an MSVKh instrument with the use of ^{252}Cf fission fragments. The fast atom bombardment (FAB) ionization mass spectra were recorded on an AMD-402 instrument. The optical yield of compound **5** was determined by HPLC on a Varian 5000 chromatograph equipped with an (R, R) WHELK-01 chiral column (hexane—Pr¹OH (4 : 1) as the eluent, 1 mL min⁻¹, absorption detection at $\lambda = 254$ nm) according to recommendations of the study.⁸

The starting substrate (1,3-diphenylallyl acetate) was synthesized according to a known procedure.⁹ Sodium *p*-toluenesulfinate (Acros Organic) used as a nucleophile was dried *in vacuo* (2 h, 80 °C, 1 Torr). The spectroscopic and physicochemical characteristics of product **5** are identical with those published in the literature.^{7,8}

All reactions were carried out under an atmosphere of dry argon in anhydrous solvents. Phosphorus trichloride was distilled immediately before use. (*S*)-2-(Anilinomethyl)pyrrolidine, which was synthesized according to a known procedure,⁵ was subjected to azeotropic drying with benzene and vacuum distillation (1 Torr) immediately before use. (*4S,5S*)-(-)-2-Methyl-4-hydroxymethyl-5-phenyl-2-oxazoline (Fluka) was dried *in vacuo* (2 h, 1 Torr) before use. The starting $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ and $[\text{Pd}(\text{All})\text{Cl}]_2$ complexes were prepared according to known procedures.^{9,10}

(2*R,5S*)-2-Chloro-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (1). Phosphorus trichloride (0.36 mL, 4.1 mmol) and Et_3N (1.12 mL, 8.2 mmol) were dissolved in benzene (40 mL). Then a solution of (*S*)-2-(anilinomethyl)pyrrolidine (0.722 g, 4.1 mmol) in benzene (20 mL) was slowly added dropwise with vigorous stirring and cooling to 0 °C. The resulting solution was heated with vigorous stirring and then cooled to 20 °C, $\text{Et}_3\text{N}\cdot\text{HCl}$ was filtered off, and the filtrate was concentrated *in vacuo* (40 Torr). The residue was evacuated (10 Torr) for 30 min (the residue solidified as large beige crystals). The product was distilled *in vacuo* (1 Torr). The yield was 0.70 g (71%), a white crystalline powder, m.p. 110–111 °C, b.p. 156–158 °C (1 Torr). Found (%): C, 55.27; H, 5.58; N, 11.95. $\text{C}_{11}\text{H}_{14}\text{ClN}_2\text{P}$. Calculated (%): C, 54.90; H, 5.86; N, 11.64. ^{31}P NMR (CDCl_3), δ : 153.66. ^{13}C NMR (CDCl_3), δ : 27.48 (s, $\text{C}(7)$); 30.83 (s, $\text{C}(6)$); 44.08 (s, $\text{C}(8)$); 52.22 (s, $\text{C}(4)$); 65.97 (s, $\text{C}(5)$); 116.96–142.74 (C_{Ph}). MS (EI), m/z (I_{rel} (%)): 240, 242 [M]⁺ (56), 205 [M – Cl]⁺ (100), 307 [M – PCl]⁺ (12).

(2*R,5S,4'S,5'S*)-2-[*(2'-Methyl-5'-phenyl-2'-oxazolin-4'-yl)methoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (2).* Reagent **1** (0.377 g, 1.57 mmol) and Et_3N (0.21 mL, 1.57 mmol) were dissolved in benzene (10 mL). Then (*4S,5S*)-(-)-2-methyl-4-hydroxymethyl-5-phenyl-2-oxazoline (0.3 g, 1.57 mmol) was added with vigorous stirring and cooling

to 0 °C. The resulting solution was stirred for 10 min, heated to 60 °C over a short period of time, and cooled to 20 °C. Then $\text{Et}_3\text{N}\cdot\text{HCl}$ was filtered off, the filtrate was concentrated *in vacuo* (40 Torr), and the residue was evacuated (2 h, 1 Torr). The yield was 0.527 g (85%), a transparent resin, $[\alpha]_D^{25} -204.7$ (*c* 0.6, CHCl_3). Found (%): C, 67.12; H, 6.51; N, 10.77. $\text{C}_{22}\text{H}_{26}\text{N}_3\text{O}_2\text{P}$. Calculated (%): C, 66.82; H, 6.63; N, 10.63. ^{31}P NMR (CDCl_3), δ : 121.67. ^{13}C NMR (CDCl_3), δ : 13.90 (s, Me); 25.91 (d, $\text{C}(7)$, $^3J_{\text{C},\text{P}} = 2.9$ Hz); 31.99 (s, $\text{C}(6)$); 48.38 (d, $\text{C}(8)$, $^2J_{\text{C},\text{P}} = 38.2$ Hz); 54.69 (d, $\text{C}(4)$, $^2J_{\text{C},\text{P}} = 7.3$ Hz); 62.62 (d, CH_2O , $^2J_{\text{C},\text{P}} = 5.0$ Hz); 63.03 (d, $\text{C}(5)$, $^2J_{\text{C},\text{P}} = 8.9$ Hz); 74.74 (d, $\text{C}(4')$, $^3J_{\text{C},\text{P}} = 1.9$ Hz); 83.30 (s, $\text{C}(5')$); 112.07–147.51 (C_{Ph}); 165.10 (s, $\text{C}(2')$). MS (EI), m/z (I_{rel} (%)): 395 [M]⁺ (2), 237 (18), 70 [N(CH_2)₄]⁺ (100). MS (PD), m/z (I_{rel} (%)): 395 [M]⁺ (42), 205 (100), 70 [N(CH_2)₄]⁺ (39).

Rhodium complex **3** was prepared and characterized by spectroscopic methods in a solution in CHCl_3 without isolation according to a procedure described earlier.⁴

{(2*R,5S,4'S,5'S*)-2-[*(2'-Methyl-5'-phenyl-2'-oxazolin-4'-yl)methoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane} [π -allyl]palladium tetrafluoroborate (4).* A solution of oxazolinophosphoramidite **2** (0.395 g, 1 mmol) in CHCl_3 (15 mL) was added dropwise with vigorous stirring to a solution of $[\text{Pd}(\text{All})\text{Cl}]_2$ (0.183 g, 0.5 mmol) in CHCl_3 (15 mL) at 20 °C for 30 min. The reaction mixture was stirred at 20 °C for 1 h and then a solution of AgBF_4 (0.195 g, 1 mmol) in THF (15 mL) was added. The reaction mixture was stirred for 1 h and the precipitate of AgCl that formed was filtered off. The filtrate was concentrated *in vacuo* (40 Torr) to ~0.5 mL and precipitated with Et_2O . The precipitated that formed was separated by centrifugation, washed with Et_2O (2×5 mL), and dried in air and *in vacuo* (1 Torr). The yield was 0.548 g (87%), a white powder, m.p. 160–162 °C (with decomp.). Found (%): C, 47.43; H, 5.32; N, 6.34. $\text{C}_{25}\text{H}_{31}\text{BF}_4\text{N}_3\text{O}_2\text{PPd}$. Calculated (%): C, 47.68; H, 4.96; N, 6.67.

Palladium-catalyzed allylic sulfonylation of 1,3-diphenylallyl acetate with sodium *p*-toluenesulfinate (general procedure). A solution of $[\text{Pd}(\text{All})\text{Cl}]_2$ (3.7 mg, 0.01 mmol) or $[\text{Pd}_2(\text{dba})_3 \cdot \text{CHCl}_3]$ (10.3 mg, 0.01 mmol) and ligand **2** (7.9 mg, 0.02 mmol) in THF (5 mL) was stirred for 40 min (or complex **4** (0.02 mmol), which has been prepared beforehand, was dissolved in THF (5 mL)). Then 1,3-diphenylallyl acetate (0.1 mL, 0.5 mmol) was added, the reaction mixture was stirred for 15 min, and sodium *p*-toluenesulfinate (178 mg, 1 mmol) was added. The reaction mixture was stirred for 48 h. Then a saturated aqueous solution of NaCl (10 mL) was added. The reaction mixture was stirred for 1 h and extracted with THF (3×7 mL). The organic phase was washed with a saturated aqueous solution of NaCl (2×7 mL) and dried with MgSO_4 after which MgSO_4 was filtered off. The filtrate was recrystallized from 95% EtOH and dried *in vacuo* (12 h, 10 Torr). Product **5** was obtained as a milk-white crystalline compound. The theoretical yield was 174 mg.

We thank the Regis Technologies (USA) for a gift of an (R, R) WHELK-01 chiral column.

This study was financially supported by the Russian Foundation for Basic Research (Project Nos. 00-15-99341 and 00-15-97427) and Haldor Topsøe A/S.

References

1. *Catalytic Asymmetric Synthesis*, Ed. I. Ojima, Wiley, New York, 2000, 864 pp.
2. K. N. Gavrilov and A. I. Polosukhin, *Usp. Khim.*, 2000, **69**, 721 [Russ. Chem. Rev., 2000, **69**, 661 (Engl. Transl.)].
3. A. I. Polosukhin, O. G. Bondarev, S. E. Lyubimov, A. V. Korostylev, K. A. Lyssenko, V. A. Davankov, and K. N. Gavrilov, *Tetrahedron Asymmetry*, 2001, **12**, 2197.
4. O. G. Bondarev, K. N. Gavrilov, V. N. Tsarev, V. A. Davankov, R. V. Lebedev, S. K. Moiseev, and V. N. Kalinin, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 484 [Russ. Chem. Bull., Int. Ed., 2002, **51**, 521].
5. J. M. Brunel, T. Constantieux, and G. Buono, *J. Org. Chem.*, 1999, **64**, 8940.
6. K. N. Gavrilov, *Zh. Neorg. Khim.*, 1997, **42**, 433 [Russ. J. Inorg. Chem., 1997, **42**, 368 (Engl. Transl.)].
7. H. Eichelman and H.-J. Gais, *Tetrahedron Asymmetry*, 1995, **6**, 643.
8. D. Seebach, E. Devaquet, A. Ernst, M. Hayakawa, F. N. M. Kühne, W. B. Schweizer, and B. Weber, *Helv. Chim. Acta*, 1995, **78**, 1636.
9. P. R. Auburn, P. B. McKenzie, and B. Bosnich, *J. Am. Chem. Soc.*, 1985, **107**, 2033.
10. J. A. McCleverty and G. Wilkinson, *Inorg. Synth.*, 1966, **8**, 211.

Received July 2, 2002,
in revised form October 2, 2002